3.260 \(\int \cos (c+d x) \sin ^n(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=68 \[ \frac {a^2 \sin ^{n+1}(c+d x)}{d (n+1)}+\frac {2 a^2 \sin ^{n+2}(c+d x)}{d (n+2)}+\frac {a^2 \sin ^{n+3}(c+d x)}{d (n+3)} \]

[Out]

a^2*sin(d*x+c)^(1+n)/d/(1+n)+2*a^2*sin(d*x+c)^(2+n)/d/(2+n)+a^2*sin(d*x+c)^(3+n)/d/(3+n)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2833, 43} \[ \frac {a^2 \sin ^{n+1}(c+d x)}{d (n+1)}+\frac {2 a^2 \sin ^{n+2}(c+d x)}{d (n+2)}+\frac {a^2 \sin ^{n+3}(c+d x)}{d (n+3)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Sin[c + d*x]^n*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*Sin[c + d*x]^(1 + n))/(d*(1 + n)) + (2*a^2*Sin[c + d*x]^(2 + n))/(d*(2 + n)) + (a^2*Sin[c + d*x]^(3 + n))
/(d*(3 + n))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \cos (c+d x) \sin ^n(c+d x) (a+a \sin (c+d x))^2 \, dx &=\frac {\operatorname {Subst}\left (\int \left (\frac {x}{a}\right )^n (a+x)^2 \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {\operatorname {Subst}\left (\int \left (a^2 \left (\frac {x}{a}\right )^n+2 a^2 \left (\frac {x}{a}\right )^{1+n}+a^2 \left (\frac {x}{a}\right )^{2+n}\right ) \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {a^2 \sin ^{1+n}(c+d x)}{d (1+n)}+\frac {2 a^2 \sin ^{2+n}(c+d x)}{d (2+n)}+\frac {a^2 \sin ^{3+n}(c+d x)}{d (3+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 50, normalized size = 0.74 \[ \frac {a^2 \sin ^{n+1}(c+d x) \left (\frac {\sin ^2(c+d x)}{n+3}+\frac {2 \sin (c+d x)}{n+2}+\frac {1}{n+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*Sin[c + d*x]^n*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*Sin[c + d*x]^(1 + n)*((1 + n)^(-1) + (2*Sin[c + d*x])/(2 + n) + Sin[c + d*x]^2/(3 + n)))/d

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 135, normalized size = 1.99 \[ \frac {{\left (2 \, a^{2} n^{2} + 8 \, a^{2} n - 2 \, {\left (a^{2} n^{2} + 4 \, a^{2} n + 3 \, a^{2}\right )} \cos \left (d x + c\right )^{2} + 6 \, a^{2} + {\left (2 \, a^{2} n^{2} + 8 \, a^{2} n - {\left (a^{2} n^{2} + 3 \, a^{2} n + 2 \, a^{2}\right )} \cos \left (d x + c\right )^{2} + 8 \, a^{2}\right )} \sin \left (d x + c\right )\right )} \sin \left (d x + c\right )^{n}}{d n^{3} + 6 \, d n^{2} + 11 \, d n + 6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

(2*a^2*n^2 + 8*a^2*n - 2*(a^2*n^2 + 4*a^2*n + 3*a^2)*cos(d*x + c)^2 + 6*a^2 + (2*a^2*n^2 + 8*a^2*n - (a^2*n^2
+ 3*a^2*n + 2*a^2)*cos(d*x + c)^2 + 8*a^2)*sin(d*x + c))*sin(d*x + c)^n/(d*n^3 + 6*d*n^2 + 11*d*n + 6*d)

________________________________________________________________________________________

giac [B]  time = 0.24, size = 213, normalized size = 3.13 \[ \frac {a^{2} n^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{3} + 2 \, a^{2} n^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{2} + 3 \, a^{2} n \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{3} + a^{2} n^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right ) + 8 \, a^{2} n \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{3} + 5 \, a^{2} n \sin \left (d x + c\right )^{n} \sin \left (d x + c\right ) + 6 \, a^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )^{2} + 6 \, a^{2} \sin \left (d x + c\right )^{n} \sin \left (d x + c\right )}{{\left (n^{3} + 6 \, n^{2} + 11 \, n + 6\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

(a^2*n^2*sin(d*x + c)^n*sin(d*x + c)^3 + 2*a^2*n^2*sin(d*x + c)^n*sin(d*x + c)^2 + 3*a^2*n*sin(d*x + c)^n*sin(
d*x + c)^3 + a^2*n^2*sin(d*x + c)^n*sin(d*x + c) + 8*a^2*n*sin(d*x + c)^n*sin(d*x + c)^2 + 2*a^2*sin(d*x + c)^
n*sin(d*x + c)^3 + 5*a^2*n*sin(d*x + c)^n*sin(d*x + c) + 6*a^2*sin(d*x + c)^n*sin(d*x + c)^2 + 6*a^2*sin(d*x +
 c)^n*sin(d*x + c))/((n^3 + 6*n^2 + 11*n + 6)*d)

________________________________________________________________________________________

maple [F]  time = 6.52, size = 0, normalized size = 0.00 \[ \int \cos \left (d x +c \right ) \left (\sin ^{n}\left (d x +c \right )\right ) \left (a +a \sin \left (d x +c \right )\right )^{2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*sin(d*x+c)^n*(a+a*sin(d*x+c))^2,x)

[Out]

int(cos(d*x+c)*sin(d*x+c)^n*(a+a*sin(d*x+c))^2,x)

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 63, normalized size = 0.93 \[ \frac {\frac {a^{2} \sin \left (d x + c\right )^{n + 3}}{n + 3} + \frac {2 \, a^{2} \sin \left (d x + c\right )^{n + 2}}{n + 2} + \frac {a^{2} \sin \left (d x + c\right )^{n + 1}}{n + 1}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^n*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

(a^2*sin(d*x + c)^(n + 3)/(n + 3) + 2*a^2*sin(d*x + c)^(n + 2)/(n + 2) + a^2*sin(d*x + c)^(n + 1)/(n + 1))/d

________________________________________________________________________________________

mupad [B]  time = 9.64, size = 147, normalized size = 2.16 \[ \frac {a^2\,{\sin \left (c+d\,x\right )}^n\,\left (16\,n+30\,\sin \left (c+d\,x\right )-2\,\sin \left (3\,c+3\,d\,x\right )+29\,n\,\sin \left (c+d\,x\right )+16\,n\,\left (2\,{\sin \left (c+d\,x\right )}^2-1\right )-3\,n\,\sin \left (3\,c+3\,d\,x\right )+7\,n^2\,\sin \left (c+d\,x\right )+4\,n^2\,\left (2\,{\sin \left (c+d\,x\right )}^2-1\right )+4\,n^2+24\,{\sin \left (c+d\,x\right )}^2-n^2\,\sin \left (3\,c+3\,d\,x\right )\right )}{4\,d\,\left (n^3+6\,n^2+11\,n+6\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*sin(c + d*x)^n*(a + a*sin(c + d*x))^2,x)

[Out]

(a^2*sin(c + d*x)^n*(16*n + 30*sin(c + d*x) - 2*sin(3*c + 3*d*x) + 29*n*sin(c + d*x) + 16*n*(2*sin(c + d*x)^2
- 1) - 3*n*sin(3*c + 3*d*x) + 7*n^2*sin(c + d*x) + 4*n^2*(2*sin(c + d*x)^2 - 1) + 4*n^2 + 24*sin(c + d*x)^2 -
n^2*sin(3*c + 3*d*x)))/(4*d*(11*n + 6*n^2 + n^3 + 6))

________________________________________________________________________________________

sympy [A]  time = 12.06, size = 530, normalized size = 7.79 \[ \begin {cases} x \left (a \sin {\relax (c )} + a\right )^{2} \sin ^{n}{\relax (c )} \cos {\relax (c )} & \text {for}\: d = 0 \\\frac {a^{2} \log {\left (\sin {\left (c + d x \right )} \right )}}{d} - \frac {2 a^{2}}{d \sin {\left (c + d x \right )}} - \frac {a^{2}}{2 d \sin ^{2}{\left (c + d x \right )}} & \text {for}\: n = -3 \\\frac {2 a^{2} \log {\left (\sin {\left (c + d x \right )} \right )}}{d} + \frac {a^{2} \sin {\left (c + d x \right )}}{d} - \frac {a^{2}}{d \sin {\left (c + d x \right )}} & \text {for}\: n = -2 \\\frac {a^{2} \log {\left (\sin {\left (c + d x \right )} \right )}}{d} + \frac {a^{2} \sin ^{2}{\left (c + d x \right )}}{2 d} + \frac {2 a^{2} \sin {\left (c + d x \right )}}{d} & \text {for}\: n = -1 \\\frac {a^{2} n^{2} \sin ^{3}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {2 a^{2} n^{2} \sin ^{2}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {a^{2} n^{2} \sin {\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {3 a^{2} n \sin ^{3}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {8 a^{2} n \sin ^{2}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {5 a^{2} n \sin {\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {2 a^{2} \sin ^{3}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {6 a^{2} \sin ^{2}{\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} + \frac {6 a^{2} \sin {\left (c + d x \right )} \sin ^{n}{\left (c + d x \right )}}{d n^{3} + 6 d n^{2} + 11 d n + 6 d} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)**n*(a+a*sin(d*x+c))**2,x)

[Out]

Piecewise((x*(a*sin(c) + a)**2*sin(c)**n*cos(c), Eq(d, 0)), (a**2*log(sin(c + d*x))/d - 2*a**2/(d*sin(c + d*x)
) - a**2/(2*d*sin(c + d*x)**2), Eq(n, -3)), (2*a**2*log(sin(c + d*x))/d + a**2*sin(c + d*x)/d - a**2/(d*sin(c
+ d*x)), Eq(n, -2)), (a**2*log(sin(c + d*x))/d + a**2*sin(c + d*x)**2/(2*d) + 2*a**2*sin(c + d*x)/d, Eq(n, -1)
), (a**2*n**2*sin(c + d*x)**3*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + 2*a**2*n**2*sin(c + d*x)**2
*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + a**2*n**2*sin(c + d*x)*sin(c + d*x)**n/(d*n**3 + 6*d*n**
2 + 11*d*n + 6*d) + 3*a**2*n*sin(c + d*x)**3*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + 8*a**2*n*sin
(c + d*x)**2*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + 5*a**2*n*sin(c + d*x)*sin(c + d*x)**n/(d*n**
3 + 6*d*n**2 + 11*d*n + 6*d) + 2*a**2*sin(c + d*x)**3*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + 6*a
**2*sin(c + d*x)**2*sin(c + d*x)**n/(d*n**3 + 6*d*n**2 + 11*d*n + 6*d) + 6*a**2*sin(c + d*x)*sin(c + d*x)**n/(
d*n**3 + 6*d*n**2 + 11*d*n + 6*d), True))

________________________________________________________________________________________